~
The University of Texas at Austin

TEXAS ADVANCED COMPUTING CENTER

WWW.TACC.UTEXAS.EDU

Using the Interactive Parallelization
Tool to Generate Parallel Programs
(OpenMP, MPI, and CUDA )

SCEC17 Workshop PRESENTED BY:
December 17, 2017 Ritu Arora: rauta@tacc.utexas.edu

Lars Koesterke: lars@tacc.utexas.edu




Link to the Slides and Other Material

https://tinyurl.com/y6v6ftwg

1/9/18



Outline

Introduction to IPT (prototype version used)
« What is Interactive Parallelization Tool (IPT)?

Introduction to Our Approach for Teaching Parallel
Programming

Parallelizing applications using IPT (hands-on session)

Exercise-1
Exercise-2
Understanding performance and speed-up

Comparing performance of the hand-written code with the generated
code for exercises 1 and 2

v

1/9/18 ‘ 3



Keeping-Up with the Advancement in HPC

Platforms can be an Effort-Intensive Activity
Code modernization can be required to take advantage of the
continuous advancement made in the computer architecture
discipline and the programming models

« o efficiently use many-core processing elements

« To efficiently use multiple-levels of memory hierarchies

» To efficiently use the shared-resources

The manual process of code modernization can be effort-intensive
and time-consuming and can involve steps such as follows:
Learning about the microarchitectural features of the latest platforms
Analyzing the existing code to explore the possibilities of improvement
Manually reengineering the existing code to parallelize or optimize it
Explore compiler-based optimizations

mmiest,and if needed, repeat from step 3
.\ 0= 0= 1/9/18 \ 4

& wN



Evolution in the HPC Landscape — HPC
Systems at TACC

Multi-Core and Manycore CPUs

Stampede2
68 cores on main processor (Intel KNL)

Multi-Core CPU, GPU, Co-

Processor with many cores

Stampede
8 cores in main processor
(Intel Sandy Bridge)

& performance

Multi-Core CPUs, GPU

Ranger
4 cores in main processor
(AMD Opteron)

0.56
L —

2008 2013 2017

Years
1/9/18 5




IPT — How can it help you?

If you know what to parallelize and where, IPT can help
you with the (of MP1/OpenMP/CUDA) and
typical for parallelization

« Main purpose of IPT: a tool to aid in learning parallel
programming

* Helps in learning parallel programming concepts
without feeling burdened with the information on the
syntax of MPI/OpenMP/CUDA

« C and C++ languages supported as of now, Fortran
will be supported in future



IPT: High-Level Overview

Can ) [ e ) [(wosu )

IPT Interfaces for Specifications

(Input)

C/C++/Fortran
Serial Program

v

N

\ 4
4 .
[ Parallelization
Parser

|

Patterns (Design

Rules Templates)
o
v v 4 .
[ Program Transformation Engine
o
l /

v

(et ) ((openser | [ copa | [ ybna

Parallel Program (Output)

Tacc

1/9/18



Before Using IPT

« |tis important to know the logic of your serial application before
you start using IPT

 |PT is not a 100% automatic tool for parallelization

« Understand the high-level concepts related to parallelization

 Data distribution/collection
For example: reduction

* Synchronization
» Loop/Data dependency

« Familiarize yourself with the user-guide

TACC

1/9/18



How are we teaching Parallel Programming with
IPT?

* We have classes where we introduce the concept and many
details, followed by some examples

The IPT training class is different

* Code modification with our tool IPT

e Short introduction

* Example: serial = parallel with IPT

* Inspection of the semi-automatically parallelized code

* Learning by doing

* Focus on concepts; less important syntax taken care of by IPT
* Next example focusing on other features




First: Discuss High-Level Concepts

General Concepts Related to Parallel Programming:

. Data distribution/collection/reduction Must know before

using IPT

*  Synchronization

 Loop dependence analysis (exercise # 2)

Specific to OpenMP: IPT can help with most of these

* Astructured block having a single entry and exit point

+  Threads communicate with each other by reading/writing from/to a shared memory region

«  Compiler directives for creating teams of threads, sharing the work among threads, and synchronizing the
threads

« Library routines for setting and getting thread attributes

Additional Concepts Related to OpenMP: Programmer needs to decide
at run-time

. Environment variables to control run-time behavior




Process of Parallelizing a Large Number of
Computations in a Loop

Loops can consume a
lot of processing time
when executed in serial

mode

Their total execution

Large Computation

Decomposed into

time can be reduced by Smaller Pieces

sharing the

computation-load
among multiple threads

or processes

Each Piece of the

Decomposed Computation

is Mapped to a Processing

Large
Computation

7
et >
\

Element (PE)
Piece-1 of > PE-1
Computation '\
Piece-2 of 3 PE-2 >
Computation /
Piece-3 of — PE-3

Computation

Combine the
Results
Produced by
the PEs into a
Global Result




Data Distribution/Collection/Reduction

Each Piece of the

Decomposed Computation

is Mapped to a Processing

Element (PE)

PE-1

Partial Result= 2

Collect Data from PEs

Collecting the partial
> results and storing

PE-2

Partial Result= 3

them into an array

(2 [3 [2 |

PE-3

Partial Result = 2

|

Each Piece of the

Decomposed Computation

is Mapped to a Processing

Element (PE)

PE-1

Partial Result = 2

Collect Data from PEs

Collecting the partial
>! results, adding them,

Partial Result =3

and storing the final
result in a variable

Partial Result= 2

>

Processing Element
(PE) is a thread in
OpenMP

1/9/18 12



Synchronization

« Synchronization helps in controlling the
execution of threads relative to other threads
In a team

« Synchronization constructs in OpenMP:

master, single, atomic, critical, barrier, taskwait, flush,
parallel {...}, ordered

1/9/18 13



Loop/Data Dependency

Loop dependence implies that there are dependencies between the
iterations of a loop that prevent its parallel processing
Analyze the code in the loop to determine the relationships between statements

Analyze the order in which different statements access memory locations
(data dependency)

On the basis of the analysis, it may be possible to restructure the loop to
allow multiple threads or processes to work on different portions of the
loop in parallel

For applications that have hotspots containing ante-dependency
between the statements in a loop (leading to incorrect results upon
parallelization), code refactoring should be done to remove the ante-
dependency prior to parallelization. One such example is example2.c



As a Second Step: Gentle Introduction
to OpenMP



Shared-Data Model

e Threads Execute on Cores/HW-threads

* In a parallel region, team threads are assigned
(tied) to implicit tasks to do work. Think of
tasks and threads as being synonymous.

* Tasks by “default” share memory declared in
scope before a parallel region.

* Data: shared or private
— Shared data: accessible by all tasks
— Private data: only accessible by the owner task

Private
Memory

[ ]
[]
[ ]
[ ]

16



Structured Block: Single Entry and Exit
Point

OpenMP construct = Compiler Directive + Block of Code

* The block of code must must have a single entry point
at the beginning, and a single exit point at the bottom,
hence, it should be a structured block

Branching in and out of a structured block is not allowed

No return statements are allowed
exit statements are allowed though

Compile-time errors if the block of code is not structured

1/9/18 ‘ 17



Third Step: Get Your Hands dirty with
the Code but Before that, Some Heads-
Up about IPT



Understanding the Questions Presented by
IPT During the Parallelization Process #1

IPT analyzes the input source code, and prepares a list of the variables that are good candidates for
a reduction operation at the chosen hotspot. It then prompts the user to further short-list the
variables as per their needs. For example, it poses a question as follows:

Please select a variable to perform the reduction operation on (format 1,2,3,4 etc.). List of
possible variables are:

1. j type is int
2. sum type is double
2

Please enter the type of reduction you wish for variable [sum]
. Addition

. Subtraction

Min

. Max

. Multiplication

= 0 b w N



Understanding the Questions Presented by
IPT During the Parallelization Process #2

In some cases IPT needs some information from the user while deciding whether
an array should be part of the shared clause or private/firstprivate
clause. In those cases, IPT prompts the user with a question as follows:

IPT is unable to perform the dependency analysis of the
array named [ tmp ] in the region of code that you wish to
parallelize. Please enter 1 1f the entire array 1s being
updated in a single iteration of the loop that you
selected for parallelization, or, enter 2 otherwise.

If the user selects 1, then the array will be added to the private/
firstprivate clause otherwise to the shared clause



Understanding the Questions Presented by
IPT During the Parallelization Process #3

There may be some regions of the code that a user may
want to run with one thread at a time (critical
directive) or with only one thread in the team of threads
(single directive). To understand such requirements of
the user, IPT asks the following question:

Are there any lines of code that you would
like to run either using a single thread
at a time (hence, one thread after
another), or using only one thread? (Y/N)



Errors and Bugs

While using IPT, if you see an error like the following one, then this means
that you missed sourcing the file for setting the library paths:

c557-903% ../../IPT matrix mul.cc

../../IPT: error while loading shared libraries:
librose.so0.0: cannot open shared object file: No such
file or directory

To fix this error:
c557-903$% source ../../runBeforeIPT.sh



Errors and Bugs # 2

The following error message indicates that the Intel
compiler is not available In your user environment

C557—903$ icpc —gopenmp -0 rose heat serial OpenMP
rose heat serial OpenMP.c

-bash: 1cpc: command not found

Fix:
c557-903S ml intel



Error and Bugs # 3

« The prototype version of IPT that is being used for today’s
training has only limited features

» Code for supporting sections and parallel regions without for-loops is
turned off

» Scheduling, locks, reduction of array elements in C/C++ (supported by
the OpenMP 4.5 spec) is not available in the current prototype.

» Limited set of reduction-identifier/operation supported currently

« Using this version to parallelize the region of code containing
dynamically allocated arrays is very likely to produce incorrect
output code

TACC

1/9/18

24



Hand-on Session/Demo of IPT



Accessing Files for the Exercises

! This would be your
Log on to Stampede using your login name TACC porta| account
user name

ssh <your login_name>@stampede.tacc.utexas.edu

cds

mkdir trainingIPT

cd trainingIPT

cp -r /work/01698/rauta/trainingIPT/* .

idev



First Things First (1)

Logon to Stampede

How to logon to Stampede:

* You all should have a TACC portal account or the training
account provided to you

e Use this account name and password to logon
 QOpen aterminal on your computer (MacOS or Linux)

S ssh <username>(

e Use Putty on a Windows laptop



First Things First (2)

Start an interactive session on Stampede with idev

How to launch an idewv job on Stampede:

* Idev: Interactive development

* When asked, accept to use the reservation

* Once the jobis running and the prompt returns: check hostname

e S idev —-m 120
e S hostname

* Now all of you have a single node where you can edit the code, run
IPT, and run the serial and parallel code |



Retrieve the Example Files

Copy the files from Ritu’s account

* S cp -pr /work/01698/rauta/trainingSCEC

* Now all of you have a single node where you can edit the code, run
IPT, and run the serial and parallel code

Get IPT ready for use by executing a shell script

e S source ./runBeforelIPT.sh
e S module load intel

29



First example (1)

Let’s start with example 1

S cd exercises
S cd exercisel
S 1s -al

There is a Fortran file and a C file

For now IPT only works with C/C++ (but you can look at the Fortran
source, if that is more convenient)

30



First example (2)

Let’s start with example 1

« Before using IPT inspect the code (we will do this together here)
 Use one of these: ‘more’, ‘vi’, or ‘emacs’

S more examplel.c

S vi examplel.c

S emacs examplel.c

IPT will ask you a lot of questions
These are the important ones (for now)
* Which loop should IPT parallelize?

* Isthere areduction?

31



#include <stdio.h>
#include <sys/time.h>

First example (3) e 0

inti, j;
double x[N+2][N+2], y[N+2][N+2], sum, tmp;

//for timing the code section

Examp|61 struct timeval start,end;

float delta;
for(i=0; i<=N+1; i++){
for(j=0; j<= N+1 j++){

2 arrays: xandy : VU101 = (doubie) ((14])%3) - 0.9999;
. . . . }
LOOp 1 |n|t|a||2e5 X ;)/rintf(“\nMemo(;’y a|IIo<|:ation done successfully\n");
. tart ti ti
Loop 2: Stencil update gettimeofday(&start, NULL);
1. v, is calculated from x. . for(j=1; j<N+1; j++){
1) - .|:J for(i=1; isN+L; i++){ - - -
2. A tem pora ry va rlable IS ;?]FEJ]::Otfnp’(X[I][J] + x[i-1][j] + x[i+1][j] + x[i1[j-1] + x[i][j+1]);
being used }Sum:SUm+tmp;
. }
3. The sum of all elements is ., o
top ti ti
calculated Eettimeofday(&end, NULL):
. . . delta = ((end.tv_sec—star_t.t(\)/_sec)*1000000u + end.tv_usec-start.tv_usec)/1.e6;
The latter, i.e., calculation (3) is print(\nThe tofal sum is: S sum);
Ca”ed a reducﬁon printf("run time = %fs\n", delta);
return O;



#include <stdio.h>
#include <sys/time.h>

First example (4) e N0

inti, j;
double x[N+2][N+2], y[N+2][N+2], sum, tmp;

//for timing the code section

Examp|61 struct timeval start,end;

float delta;
for(i=0; i<=N+1; i++){
for(j= O j<= N+1 j++){

Running IPT: essentials : XU < (double) ((1+)%3) - 0.9999;
' }
 Parallelize |00p #2 ;)/rintf("\nMemo(;’y a|IIo<|:ation done successfully\n");
. tart ti ti
e Instruct IPT to add a reduction cettimeotday(&start, NULL)
1. Reduction variable: sum for(j=1; j<N+1; j++){
for(i=1; i<N+1; i++ ){
2. Red ucﬁon Opera‘[_—ion: add tr[\?]rf']=_0)-c2 * .(X[i][J'] + x[i-1][j] + x[i+2][j] + x[i1[j-1] + x[i][j+1]);
ZulmJ :_surrT:\pJ- tmp;
)
)

//stop timer and calculation

gettimeofday(&end, NULL);

delta = ((end.tv_sec-start.tv_sec)*1000000u + end.tv_usec-start.tv_usec)/1.e6;
printf("\nThe total sum is: %If\n", sum);

//print time to completion

printf("run time = %fs\n", delta);

return O;



First example (5)

Examplel: All steps (I will demo this example in a minute)

Parallel Programming MPI, OpenMP, CUDA OpenMP (2)

Choose function main (1)

Parallel region, loop, or section loop (2)

Select loop select third loop
Reduction yes

Reduction variable sum (3)
Reduction operation addition (1)
Dependency analysis select (2)

Single thread no

Another loop no

Printing no



First example (6)

Examplel: On screen demo




First example (7)

Examplel: Parallelized code

rose examplel OpenMP.c
Let’s compile and run it
Compile: icc —qopenmp rose examplel OpenMP.c

Select number of threads: export OMP NUM THREADS=4
Execute: . /a.out

TACC

36



First example (8)

Examplel: Let’s check the performance

Run the code with different numbers of threads and report the timing
./a.
./a.
./a.
./a.
./a.
./a.

export OMP NUM THREADS=1;
export OMP NUM THREADS=2;
export OMP NUM THREADS=4;
export OMP NUM THREADS=8;
export OMP NUM THREADS=16;
export OMP NUM THREADS=32;

TACC

out
out
out
out
out
out

37



First example (8)

Examplel: Let’s check the performance

Run the code with different numbers of threads and report the timing
./a.
./a.
./a.
./a.
./a.
./a.

export OMP NUM THREADS=1;
export OMP NUM THREADS=2;
export OMP NUM THREADS=4;
export OMP NUM THREADS=8;
export OMP NUM THREADS=16;
export OMP NUM THREADS=32;

TACC

out
out
out
out
out
out

38.
19.
16.
16.
11.

9.

3

W o b o Ut

38



First example (9)

Examplel: Let’s inspect the parallel

version of the code

1.

2.

Header file in all routines with
OpenMP content

Parallel region
1. Threads are spawned

2. All code within the curly
brackets {} is executed by all
threads

Worksharing for following loop (j
loop)

1. Worksharing = every thread
is executing a different chunk
of the loop

#include <omp.h>
#include <stdio.h>
#include <sys/time.h>
#define N 30000

int main()

—_

inti;
intj;
double x[30002UL][30002UL];
double y[30002UL][30002UL];
double sum;
double tmp;
//for timing the code section
struct timeval start;
struct timeval end;
float delta;
for (i = 0; i <= 30000 + 1; i++) {
for (j = 0; j <= 30000 + 1; j++) {
x[i1[j] = (((double )((i +j) % 3)) - 0.9999);

printf("\nMemory allocation done successfully\n");
//start timer and calculation

gettimeofday(&start,0);

#pragma omp parallel default(none) shared(sum,x,y) private(j,i,tmp)

#pragma omp for reduction ( + :sum)
for (j = 1;j < 30000 + 1; j++) {
for (i = 1 i < 30000 + 1 i++) {
yrﬂl]F[)J] (0. 2 * (OO0 + x[i - 1]03) + x[i + 2101) + (G - 1) + x[i10 + 11);
sum = (sum +tmp);
}
}
}



First example (10)

Examplel: Look at the 2 OpenMP statements in the parallel code

#pragma omp parallel default(none) shared(sum,x,y) private(j,i,tmp)

{

#pragma omp for reduction ( + :sum)
for ... {

TACC

40



Execution Model

Programs begin as a single process: master thread

Master thread executes in serial mode until the parallel
construct is encountered

After executing the statements in the parallel region, team
threads synchronize and terminate (join) but master continues

—
»

time Parallel

Parallel aralle _
Directive 3 Serial _

Serial Directive 35 Serial

execution © S
©
©
4

@
@
@
@
@

threads
6 threads

Master Thread Multi-Threaded

41



OpenMP Syntax

Compiler directive syntax:

#pragma omp construct [clause [[,]clause]...] C/C++
ISomp construct [clause [[,]Jclause]...] F90
Example
Fortran

C/C++
print*,“serial” printf (“serial\n”);

'Somp parallel num threads (4) #fipragma omp parallel num threads (4)

{
!Somp end parallel

}

print*,“serial”

printf (“serial\n”);
‘Tacc | 2




Parallel Region & Worksharing

Use OpenMP directives to specify Parallel Region &
Worksharing constructs

parallel Code block Each Thread Executes
do / for Worksharing
sections Worksharing

end parallel single Worksharing (one thread)

Sentinels
“1Somp” and
“Hpragma omp”)
not shown here

Work-sharing Directives :
There is an construct!




C/C++ Worksharing: Loop

#pragma omp parallel Or
( #pragma omp parallel
#pragma omp for
#pragma omp for for (i=0; i<N; i++)
for (i=0; i<N; i++) a[i] = b[i] + c[i];

{
al[i] = b[i] + c[i];

0 JdJ o O b W DN PR

Line 1 Team of threads formed (parallel region).

Line 3-7 Loop iterations are split among threads.
implied barrier at }

Each loop iteration must be independent of other iterations.

44



First example (11)

Examplel: How about the clauses in the ‘omp parallel’ statement?

#pragma omp parallel

{

Every thread needs a private copy of
|00p indices | and J ?pragma omp parallel default(none) shared(x,y) private(j,i,tmp)
Scalar Variable tmp #pragma omp for reduction ( + :sum)
The input and output arrays are shared &% 250000+ 1y
arrays: X and y ;rgi\]rfj;ﬂﬁ;((((X[i]U] +x[i - 1][j]) + x[i + 1](j]) + x[il[j - 1]) + x[i][j + 11));
sum = (sum + tmp);

Every.thread is writing to a different )
array element :



C/C++

Private Data Example

In the following loop, each thread needs its own private copy of temp

If temp were shared, the result would be unpredictable since each
thread would be writing/reading to/from the same memory location

#pragma omp parallel for shared(a,b,c,n) private(temp,i)
for (i=0; i<n; i++){
temp = a[i] / b[i];

c[i] = temp + cos(temp);

A lastprivate(temp) clause will copy the last loop(stack) value of temp to the (global)
temp storage when the parallel for is complete.

A firstprivate(temp) would copy the global temp value to each stack’s temp.



First example (12)

Examplel: How about the clauses in the ‘omp for’ statement?

#pragma omp for reduction (+:sum)
for ...

{ Reduction variables store the local results of each thread.

The local results are combined with a reduction operation to
produce a global result.

A reduction is performed in the loop
Variable sum is updated by all threads

#pragma omp parallel default(none) shared(x,y) private(j,i,tmp)

#pragma omp for reduction ( + :sum)
for (j=1;j<30000 + 1; j++) {
for (i=1;i< 30000 + 1; i++) {
tmp = (0.2 * ((((x[I10] + x[i - 1]01) + x[i + 1]01) + x[]0 - 1) + x[i][j + 11));
y([il[i] = tmp;
sum = (sum + tmp);

}
}




C/C++ Reduction

* Operation that combines multiple elements to form a single result
* Avariable that accumulates the result is called a reduction variable

* In parallel loops reduction operators and variables must be declared

float asum=0.0, aprod=1.0;

#pragma omp parallel for reduction(+:asum) reduction (*:aprod)
for (i=0; i<n; i++){
asum = asum + al[i];
aprod = aprod * al[i];

}

Each thread has a private asum and aprod, initialized to the operator’s identity

+ After the loop execution, the master thread collects the private values of each
thread and finishes the (global) reduction



First example (13)

Examplel: Environment variable OMP NUM THREADS

export OMP NUM THREADS=4; ./a.out
OMP_NUM_THREADS sets the default number of threads

There are other ways to change the number of threads
Function call within code: omp set num threads (8)

Clause at the omp parallel statement
#pragma omp parallel numthreads (8)

49



OpenMP Environment Variables

variable description

OMP_NUM_THREADS=integer Set to default no. of threads to use

OMP_SCHEDULE="schedule-type[, chunk_size]” %ets P e 10 (B schedgle c!’a Use:
...omp for/do schedule(runtime)

_ Prints runtime environment at
QLA AL AN S el beginning of code execution.

[...] = optional



Second example (1)

Let’s start with example 2

S cd
S cd exercise?2
S 1s -al

There is a Fortran file and a C file

For now IPT only works with C/C++ (but you can look at the Fortran
source, if that is more convenient)

If your idev session has expired:
Look at previous slides and start a new session
Do not forget to source the runBeforelPT.sh script, etc.



Second example (2)

Continue with example 2

» Before using IPT inspect the code (we will do this together here)
 Use one of these: ‘more’, ‘vi’, or ‘emacs’

S more example2.c

S vi example2.c

S emacs example2.c

IPT will ask you all the usual questions
* Which loop should IPT parallelize?
* |sthere areduction?

52



Second example (3)

Can you guess why this loop cannot be so easily parallelized?

for(j=1; j<N+1; j++) {
for (i=1; i<N+1l; i++ ) {
tmp[i] [j] = 0.167 * (x[i][]j] + x[i-1][3j] + =x[i+1][3] + x[i][j-1] + x[i][j+1] + y[i+1][3])~
y[il[3] = tmp [i][3]];
sum = sum + tmp[i] []j]-
}
}



Second example (3)

But example 2 requires some code modifications

* Inside the loop, y;; is updated (same as in example 1)

* However, the right-hand side refers also to y,,, ;

* Loops can be parallelized easily when loop iterations are independent
* e.g., when you can execute the loop iterations in any order

for (j=1; j<N+1; j++) {
for(i=1; i<N+1l; i++ ){
tmp[i] [j] = 0.167 * (x[il[j] + x[i-1]1[3j] + x[i+1][3] + x[i][j-1] + x[i][3+1] + y[i+11[3]);
y[il[3] = tmp [i][3]]’
sum = sum + tmp[i] []j]-
}
}



Second example (4)

Code modifications

* In this loop the loop iterations are not independent
e Solution: Create 2 loop nests

* The first one to calculate the temporary array (tmp)

* The second one to copy tmp into y and to calculate the sum
* Then parallelize both loops separately

for (j=1; j<N+1; Jj++){
for (i=1; i<N+1l; i++ ){
tmp[i] [j] = 0.167 * (x[i][j] + x[i-1]1[3j] + x[i+1]1[3] + =[i]1[3-1] + x[i][j+1] + y[i+1]1[3]);
}
}
for (j=1; J<N+1; j++){
for (i=1; i<N+1l; i++ ){
y[il[3j] = tmp [i][3J];
sum = sum + tmp[i] [j];



Second example (5)

Example 2: Serial source code

Loop 2: Stencil update

1. Split the loop into 2
* Thisis done by you, not by IPT
2. Run the code through IPT

3. Parallelize both loops

#include <stdio.h>
#include <sys/time.h>

#define N 30000

int main() {
int i, j;
double x[N+2] [N+2], y[N+2][N+2], tmp[N+2] [N+2];
double sum=0;

//for timing the code section
struct timeval start,end;
float delta;

for (i=0; i <= N+1; i++) {
for (j=0; j <= N+1; j++){
x[i] [J] = (double) ((i+j)%3) - 0.9999;
! y[il[jl= x[i][3j] + 0.0001;
}

//start timer and calculation
gettimeofday (&start, NULL) ;

for(j=1; j<N+1; j++){
for (i=1; i<N+1; i++ ) {
tmp[i] [j] = 0.167 * (x[1]1[j] + x[i-1]1[j] + x[i+1][3j] + .
x[1][J-11 + =x[i][3+1] + y[i+1][3]);
y[il[j] = tmp [i][3j];
) sum = sum + tmp[i] [j]/
}

//stop timer and calculation
gettimeofday (&end, NULL) ;
delta = ((end.tv_sec-start.tv_sec) *1000000u +
end.tv usec-start.tv usec)/l.e6;
printf ("\nThe total sum is: %1£f\n", sum) ;™ =
//print time to completion
printf ("run time = %$fs\n", delta);
return 0;



Second example (8)

Example 2: Let’s check the performance

Run the code with different numbers of threads and report the timing
./a.
./a.
./a.
./a.
./a.
./a.

export OMP NUM THREADS=1;
export OMP NUM THREADS=2;
export OMP NUM THREADS=4;
export OMP NUM THREADS=8;
export OMP NUM THREADS=16;
export OMP NUM THREADS=32;

TACC

out
out
out
out
out
out

o7



How about using the information learnt
thus far to generate MPI or CUDA
code?

Ritu will present a demo.



Using IPT from a Web Browser

IPT will be made available through a science gateway so that you
can use it to generate parallel programs through a web browser —
NSF funded Agave project and the Science Gateway Community
Institute (SGCI) project are providing the plumbing and the
resources

Generated parallel programs could be compiled and run on
XSEDE resources or could be downloaded to run on local
systems

URL: https://ipt.tacc.cloud




Early User Group

* |If you wish to be part of our early user group
for IPT, we would love to connect with you.

* Please feel free to email us for more
iInformation on the public release of
IPT(rauta@tacc.utexas.edu,
lars@tacc.utexas.edu)

1/9/18

60



References

1.  OpenMP API specification for parallel programming: http://www.openmp.org/

2.  Ritu Arora, Julio Olaya, and Madhav Gupta. 2014. A Tool for Interactive Parallelization. In
Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery
Environment (XSEDE '14). ACM, New York, NY, USA, , Article 51 , 8 pages. DOI:
http://dx.doi.org/10.1145/2616498.2616558

3. Video-demo of parallelizing a Molecular Dynamics Code using IPT:
https://www.youtube.com/watch?v=JH70_k9Bxd0

4. Stampede User-Guide: https://portal.tacc.utexas.edu/user-guides/stampede#cluster-modes

1/9/18 61




Thank You!

We are grateful for the support received through:
 NSF Grant # 1642396

 NSF Grant # 1359304

« TACC STAR Scholars program

« Extreme Science and Engineering Discovery Environment
(XSEDE) - NSF grant # ACI-105357

 NSF Science Gateway Community Institute

XSEDE

Extreme Science and Engineering
Discovery Environment

1/9/18



