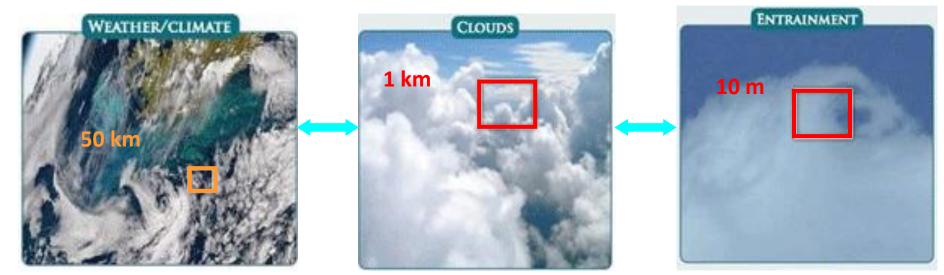

DNS for large domains: Challenges for computation and storage

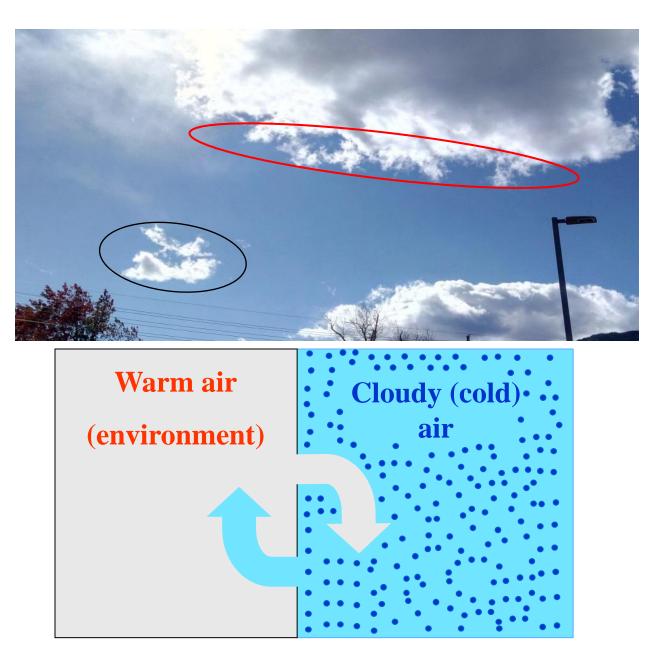
<u>Neethi Suresh</u>¹, Lois Thomas¹, Bipin Kumar¹ Ravi S. Nanjundiah^{1,2} and Suryachandra A. Rao¹

¹ Indian Institute of Tropical Meteorology, Pune, India


² Center for Atmospheric and Oceanic Science, Indian Institute of Science, Bangalore, India

Motivation

Adapted from E. Bondenschatz, S.P. Malinowski, R.A. Shaw & F. Stratmann,


Science, 327, p. 970 (2010).

15-Dec-17

Neethi Suresh

Motivation

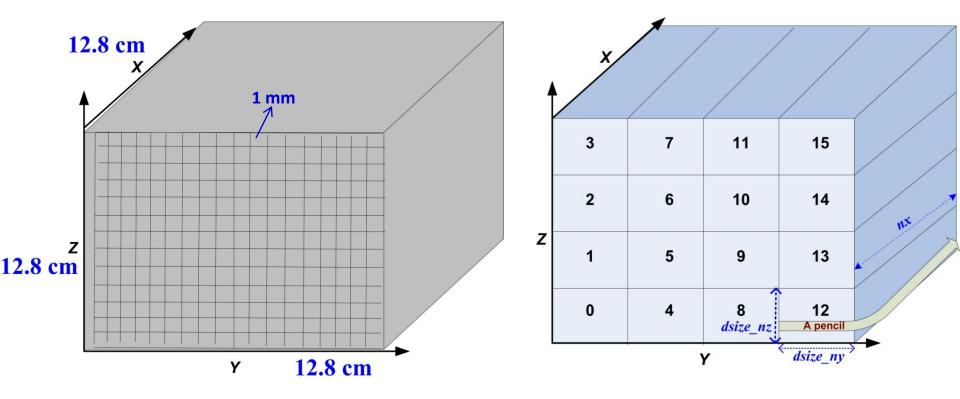
Model

Eulerian (Fluid flow equations)

 $\begin{aligned} \nabla \cdot \mathbf{u} &= 0 \\ \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\frac{1}{\rho_0} \nabla p + \nu \nabla^2 \mathbf{u} + g \left[\frac{T - T_0}{T_0} + \epsilon(q_v - q_{v0}) - q_l \right] \vec{e_z} + f_{LS} \\ \partial_t q_v + (\mathbf{u} \cdot \nabla) q_v &= D \nabla^2 q_v - C_d \\ \partial_t T + (\vec{u} \cdot \nabla) T &= \kappa \nabla^2 \vec{u} + \frac{L}{c_p} C_d \\ \kappa : \text{ thermal conductivity} \end{aligned}$ $\begin{aligned} & \kappa : \text{ thermal conductivity} \\ \text{Periodic BC} \end{aligned}$ $\begin{aligned} & R_v : \text{vapor gas constant} \\ R_d : \text{dry air gas constant} \\ q_v : \text{vapor mixing ratio} \\ q_l : \text{liquid water content} \\ \text{f_{LS}: turbulent forcing} \end{aligned}$

(form large scale)

Lagrangian (droplet movement equations)

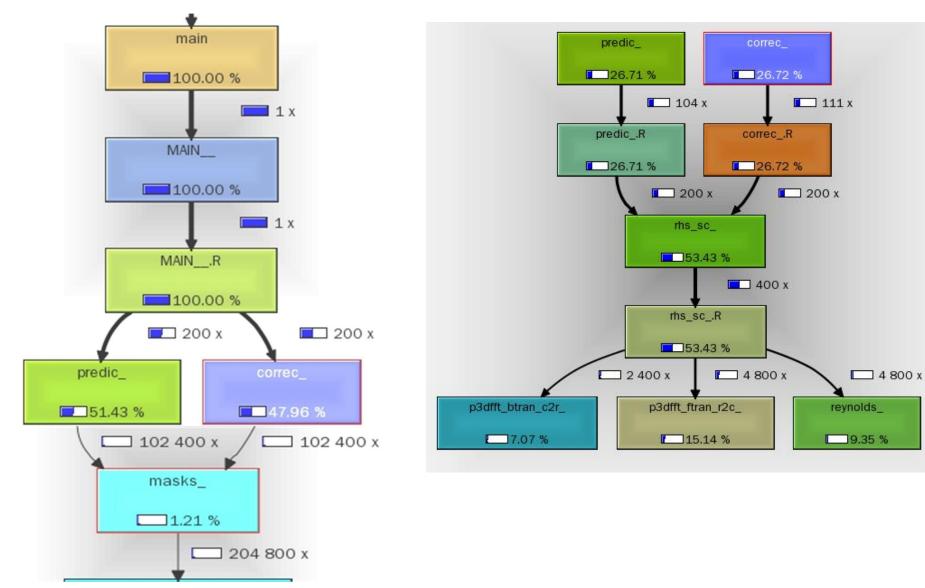

$$\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = \frac{1}{\tau_p} [\mathbf{u}(\mathbf{X}, t) - \mathbf{V}(\mathbf{X}, t)] + \mathbf{g} \qquad \tau_p = \frac{2\rho_l r^2}{9\rho_0 \nu} \quad \text{Finite particle} \\ r(\mathbf{X}, t) \frac{\mathrm{d}r(\mathbf{X}, t)}{\mathrm{d}t} = KS(\mathbf{X}, t) \qquad \rho_l \quad : \text{ water density} \\ \frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \mathbf{V}(\mathbf{X}, t) \qquad \rho_0 \quad : \text{ air density} \\ S(\mathbf{X}, t) = \frac{q_v(\mathbf{x}, t)}{q_{v,s}} - 1 \qquad \text{Kumar et al., JAS, 2014, JAMES, 2017, Götzfried et al., JFM 2017} \end{cases}$$

Computational Details

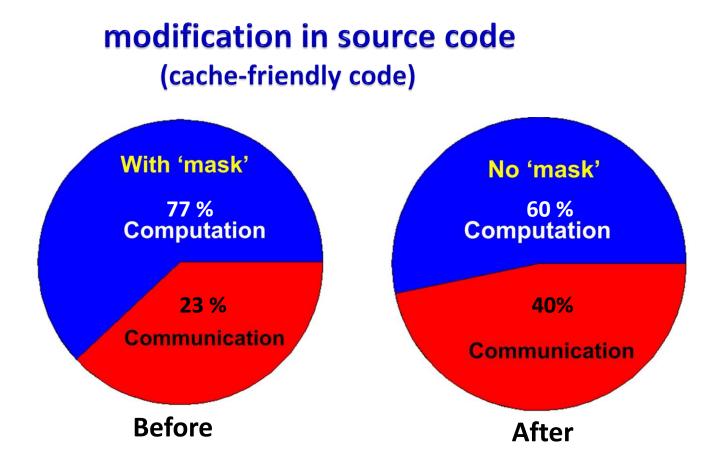
Domain decomposition on 2D processor topology

Pseudo-spectral method used to convert Partial Differential Equations (PDE) to set of Ordinary Differential Equations (ODE).

System ODE is solved by 2nd order Predictor-corrector (time stepping) method.



FORTRAN 90 + MPI + OpenMP


Flowchart

FORTRAN 90 + MPI + OpenMP

Code optimization: Profiling (DNS coding)

Code optimization

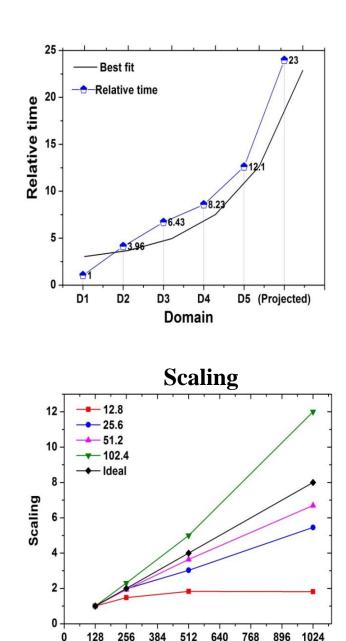
Computational time reduced by 17%.

Computational details

Four different domains

D1 : 12.8 cm³, D2: 25.6 cm³, D3: 51.2 cm³, D4: 102.4 cm³

Total times for 60000 iteration using 1024 cores.


Domain	Time	Diff1	Diff2	N_t
(cm^{3})	(sec)			
12.8 D1	2759	1	1	108134
25.6 D2	10947	4	4	865075
51.2 D3	70394	6.43	25.5	6920601
102.4 D4	579642	8.23	210	57378078
204.8 D5	6989561	12.1	2533	433166745

`Diff1' is the difference in times with respect to previous small domain. Similarly, difference in the times with respect to smallest domain is represented by `Diff2'. $N_t \rightarrow \#$ droplets required for that computational domain.

6989561 sec \rightarrow 80 days : 2m³

Requirement (for one experiment)

- ✤ Core: min (16384)
- ✤ Up to 500 TB
- ✤ More memory per core/node
- Very fast inter-processor connections

Number of Cores

Conclusions

- > Carried out simulation of cloud micro-physics in different domains.
- Cope optimization saved 17% total time.
- Scaling analysis shows a superliner speed-up. Also optimized number of cores have been suggested for each domain.
- Provide projected time and required resources for bigger domain.

Thank you for your attention