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— ECMWEF could expect to be run-
ning a T7999 (2.5 km) global fore-
cast model by 2030

— IFS model may continue to use
the spectral transform method

— Adaptation to diff. programming
model (coarrays)

. IJHPCA, G. Mozdzynski et.al (2015)
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— Upper limit for affordable power at about
20 MVA

— Enhance parallelism & scalability of NWP
(achieve time-to-solution gains on MPP)

— Change of paradigm needed: hardware,
design of codes, numerical methods,&

data movement (efficiency)

Nature, P. Bauer et.al (2015)
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NWRP: Atmosphere, Model, Computation éamc

A quantitative forecast of weather (or climate) based on model over a prescribed domain

® A system of coupled PDEs and other equations dynamic & thermodynamic processes in
the Earth’s atmosphere
— Conservation laws (momentum, energy, mass) & Equation of state (p, P, T')
— Fluid motion (relative to the Earth’s rotation)

Model | Computational Representation
e

Physical Domain. ..

Maépping

® Discretize, spatial & temporal derivatives

—> a set of algebraic equations

3-D

® Suitable discretization; coord.: (A, u, 2),

time integration schemes
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density, temperature, humidity
courtesy: Ray Melton PhD thesis (2003)

Climate modeling for Scientists and Engineers, J. B. Drake (2014)
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Shallow Water Equation (Model) ganc

SWM: Two dimensional model of atmospheric fluid dynamics, captures the essential
math. & comput. complexity of the meteorogical primitive equations (atmospheric flow). SWE
on a sphere < conservation of momentum & mass.

dV — 'V = ui + vj, velocity on the sphere
At —fk XV —-Ve — 1, j, k: unit vectors on sphere
dP — f: Coriolis force

- = —dV -V — ®: geopotential

— a: radius of sphere
— A longitude

— ¢@: latitude, pt = sin ¢

® Spectral Transform method: equations are solved in terms of the vorticity 77 and the
horizontal divergence 9

* n=f+k-(VxV),6=V-V

® To avoid singularity in velocity at poles, transform (U, V') = 'V cos ¢

® Equations for time evolution of scalar fields n, 9, ®, along with transformation

(U, V) = (¢, x), relating n < 1) & § < x (via differential equations)
NCAR technical note, J. J. Hack and R. Jacob (1992)
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Spectral Transform method COAC
The spectral representation of the scalar field variable & ()\, ,u) is represented by a truncated
series expansion in terms of spherical harmonic functions [P™ (11)e*™*] as below,
N(m)
£\, 1) Z Z £m P () eimA — \;: longitude, i € |1 : I]
—m)| — ¢:lat. uj =sing;, j €[1:J]
1T i — m: wave number/Fourier mode

&TZ/ —/f (A, e mAd | P™(p)dp - Pm(,u)'assoc Legendre func.

- - Zg >\7,7 ,U —zm>\
/ﬁm pydp = Zﬁm (1) P )

— Grld. longitude (evenly spaced grid), latitude (Gaussian grid)

— M the highest Fourier wavenumber (cut-off) included (East-West representation)

— N(m): the highest degree of the associated Legendre functions (North-South rep.)

— Triangular trunc. (m, n): N(m) = M; I x Jlong.-lat. grid: I > 3M + 1,1 =2J
— Physical gtys.: real, £, ™ = [£*]*, reduces comput./storage (only coeff. +ve modes)

— TM, “M” = horizontal resolution; T85 = M = 85, I = 256, J = 128
NCAR technical note, J. J. Hack and R. Jacob (1992)
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Spectral Transform method (contd.) E&gmc

— Spectral Transform (spherical harmonics transform) is a Fourier transform in longitude

(evenly spaced grid) followed by a Legendre transform in latitude (Gaussian grid).
- I x J: ()N, ,uj); ie[l:[],je[l:]];N(m):M; I1>3M+1,1=2J

FFT LT

THTHTHTHHHTT ] pm——
¢ ¢

» 4 m

7
Physical space Fourier space Spectral space

Forward transform:  (\;, f;) = (m, i) = (m, n)

Inverse transform: (A, 1) & (m, ;) <L (m, n)

— Computations are performed in both the physical space and spectral space

— Physical quantities & non-linear terms comput. performed in the physical space

— Time stepping is performed in spectral space

— At each time step, the data is transformed across the two spaces
SIAM Rev. Sc. Comp., |. T. Foster and P. H. Worley (1997)
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Spec. Trans. meth. for SWM: Practical outlook E&anc

{V, &} = {n, 6, ®}; Compute time evolution of scalar fields 7, 6, ®, physical quantities

At each time step:

1. Inverse Transform the fields from spectral space to physical space
2. Compute physical quantities like U, V' (Inv. Trans. of expressions computed using

spectral quantities)
3. Compute non-linear terms in physical space and Forward Transform to spectral space

4. Time integration (step) of spectral quantities; 7', 0., P

Computation Complexity
— Fourier transform (FFT): O[N? log N|
— Legendre transform: O[N]
— For inc. horizontal resol., the LT is expensive (computation) [/Ngpec ~ N? spec. pts.]

Communication
— Spectral to physical space transform & vice versa require global comm. at every time
step (expensive on massively parallel computers, scalability)

— Need to look at communication avoiding approach
MWAR, |. T. Foster et.al (1992)
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Spec. Trans. meth.: Computational efforts CONC

® To reduce the computation workload (use of math. & reduction of physical grid points).

— Use of reduced Gaussian grid (30% few points) in computing FT, and the number

of waves retained, progressively reduced for Gaussian latitudes towards poles.
— Reduced spectral transformation: reduced Gaussian grid (both FT & compuit.
non-linear terms) & reduced spectral summations (save time on LT up to 50%).

— NCEP seasonal forecast global spectral model (Compared computation: full grid

transform, reduced grid, & reduced specitral transform for 1-month integration)
MWR, H. -M. Juang (2004)

® Global models (spectral transform) are used by NCEP, JMA, & ECMWF for forecasting

(elegant treatment of the spherical problem = quest to improve efficiency)
JMSJ, D. L. Williamson (2007)

® With Fast Legendre transform: O|N 2 log3 N]. ECMWF forecasting efforts (IFS)
have benefitted immensely by FLT

® (T7999 ~ 2.5 km horizontal resolution was possible !!) longitude-latitude grid; I x .J:

23998 x 11999 ~ 10% points
MWR, N. P. Wedi et.al (2013)
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Spec. Trans. meth.: Computational efforts (contd.) conc
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— Transposition are communication intensive: Fourier<=Spectral & Physical<=Fourier
— PGAS: ILT & S=-F transpose overlapped; Overlap in time for 8 OpenMP threads

IJHPCA, G. Mozdzynski et.al (2015)
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Spectral Transform method: Comm. avoiding algo. COAC

® Replace single-domain global spectral method by
multi-domain spectral method (local harmonic expan.)
® Schwarz Domain Decomposition: subdomains; polar

caps, latitudinal bands

® Construct spectral transform (subdomain): local

Fourier basis (tailored for sperical geometry) + Sub-
spherical harmonics ( polar cap & spherical band)

® Kernel to be developed will be tested for shallow water

model
® Solve PDEs on the subdomains with appropriate boundary conditions to obtain local

solution = “Construct” global solution from local solutions (comput. & comm.)
— Computations over sub-domain can be performed across several processing

elements for each domain independently
— Communication overhead is reduced considerably in comparison to single domain
spectral method (comm. required across a subset of the processing elemnts only)
— Still ride on the advantages of the spectral transform w.r.t the treatment of the

spherical geometry C-DAC Technical Note, S. Janakiraman (2017)
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Petascale/Exascale approaches to NWP E&anc

Grid-point methods (Discretization on a cubed sphere)
® 1.63 PFlops global shallow water model on Tianhe-2 based on stencil computation over

cubed sphere mesh using Xeon Phi accelerators along with Xeon within the power
envelope of 17.8 MW [W. Xue et.al, IPDPS (2014)]
® Shallow water equation solver on heterogeneous architecture (GPU, Xeon Phi, FPGA)
based on stencil over cubed sphere mesh [H. Fu et.al, PLOS One (2017)]
Spectral element dynamical core
® Redesigning CAM-SE for Peta-Scale climate modeling performance and ultra-high
resolution on Sunway TaihuLight [H. Fu et. al, SC (2017)]

— Sustainable double-precision performance of 3.3 PFlops for a 750 m global
simulation across 10,075,000 cores
ESCAPE Project
® ESCAPE: Energy-efficient Scalable Algorithms for weather Prediction at Exascale
— Focus on weather and climate dwarfs
— New algorithms and programming models

— Use of GPUs, Xeon Phi and photonics technology for computation
http://www.hpc—-escape.eu/home
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Thank You
for your attention
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